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Architectures

Logic - the basic building blocks

654

Program

—

Architectures

Interrupt processing

Interrupt handler

..z PC>Push registers
Declare local variables
Stack | 4D ;

SP-> i
Local
varisbles
I Registers

et

Gl arabes

We successtully interrupted

a sequence of operations ...

Code management

o -
Registers
s»

Data management

Program

Architectures

Processor Architectures

A simple CPU

Decoder/Sequencer

Can be a machine in itself which breaks CPU
instructions into concurrent micro code.
Execution Unit/ Arithmetic-Logic-Unit (ALU)
A collection of transformational logic.
Memory

Registers

Instruction pointer, stack pointer,

Indicating the states of the
latest calculatiol
Code/Data management
Fetching, Caching, Storing

Architectures

Interrupt processing

Interrupt handler

Paameters

[E——

Program

Architectures

Interrupt processing

Interrupt handler

Push registers

stack ; 4

[ PP —

["Registers

Loclvarbles

Pumees

- ——
[

Declare local variables
Run handler code
. do some I/0 ..
. or run some time
critical code ..

Architectures

Code management

Processor Architectures

Interrupts

r multiple li
directly into the sequencer
Required for:
Pre-emptive scheduling, Timer driven actions,
Transient hardwar

Usually preceded by an e
(“interrupt controller
lates and encodes all external requests.

On interrupt (if unmasked):

CPU stops normal sequencer flow.
Lookup of interrupt handler’s address
Current IP and state pushed onto stack.

IP set to interrupt handler.

Architectures

Program

Stack | @

P>

Local artles

e PC‘* o

Interrupt processing
Interrupt handler

Program

Architectures

Interrupt processing
Interrupt handler

Push registers

Stack | 4

P> Tt |

=

Paametrs

Gl arsbes

Declare local variables
Run handler code
. do some I/0 ..
. or run some time
critical code
PC > Remove local variables




Architectures

Interrupt processing
Interrupt handler

Program Push registers

Declare local variables
Stack Run handler code
h . do some I/0 ..
. or run some time
critical code ..
Remove local variables
> Pop registers

Architectures

Interrupt processing
Interrupt handler

Program

Stack | @

R

Local artles

et

[

Architectures

Interrupt processing
Interrupt handler

Stack

Program __—pc>{Push registers
- Declare local variables

S Local

variables
Registers
Flags
- PC 4
Localartles

Paameters

Gl arabes

Program

Architectures

Interrupt processing
Interrupt handler

Push registers

Declare local variables
Run handler code
. do some I/0 ..
. or run some time
critical code ..
Remove local variables
>|Pop registers

Bahia Honda Rall Bridge (Creative Common

Program

e PC*@

ShareAlike 3.0, Photography by MrX a Englisy

Architectures

Interrupt processing
Interrupt handler

stack ;4D

- SP>| Flags
T

Loclvrbles

Puameers

[Ep—

Program

Program

Stack | @

Architectures

Interrupt processing
Interrupt handler

Push registers

| |Declare local variables
G Run handler code
. do some I/0 ..
. or run some time
critical code ..

Stack

- sp>
Local
varisbles
veriables |
Registers
Pags
Pe

Loclvarbles

Lol vrbies

Pumees

[

e PO

Architectures

Interrupt processing
Interrupt handler

The CPU
hardware (1)
did that,

was changed

Program

before anything “

Architectures

Interrupt processing
Interrupt handler

Push registers

Stack | 4

S T

'TE
e 1

F

Gl v |

Declare local variables
Run handler code
. do some I/0 ..
. or run some time
critical code ..
> Remove local variables




Architectures

Interrupt processing
Interrupt handler

Program Push registers

Declare local variables
Run handler code
. do some I/0 ..
. or run some time
critical code ..
Remove local variables
> Pop registers

FP >W o N

f—

Gl vrisbes
Base >

T page 669 of 758 (chapter 9: “Architectures

Program

Stack

£

S—

Architectures

Interrupt processing

Interrupt handler

Push registers
Declare local variables
Run handler code
. do some I/0 ..
. or run some time
critical code ..

Architectures

Interrupt processing
Interrupt handler

Program

Gl vrisbes
Base >t
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Architectures

Interrupt processing
Interrupt handler

Architectures

Interrupt processing
Interrupt handler

Architectures

Interrupt processing
Interrupt handler
e — Program Clear interrupt flag

Stack

page 672 of 758 (chapter 9: “Arch

Architectures

Interrupt processing
Interrupt handler

Program Clear interrupt flag

(Adjust priorities)
(Re-enable interrupt)
Push other registers
e Declare local variables
varigbles | PC > Run handler code
. do some 1/0 ..
. or run some time
critical code ..

i}
Registers

1 tocal ol
et

ariabes

Stack

-~

S
Scratch
registers
Flags
i

Loclvrbles

Lol vraies

[ Rt s

Puameers

Gl

_—PC>{Clear interrupt flag
A )

ust prio
e-enable in

Program

S
Scratch
registers

Flags
e

Loclvarbles

Lol vrbies

=

Pumees

[

Architectures

Interrupt processing

Interrupt handler

Clear interrupt flag
(Adjust priorities)
(Re-enable interrupt)
Push other registers
Declare local variables
Run handler code
. do some 1/0 ..
. or run some time
critical code ..
Remove local variables
»|Pop other registers

i | (adjust priorities)
Stack ! @ (Re-enable interrupt)
I |Push other registers
P> ¢ » Declare local variables

Leeal
wrisles

Architectures

Interrupt processing
Interrupt handler

Program Clear interrupt flag

(Adjust priorities)
(Re-enable interrupt)
Push other registers
Declare local variables
Run handler code

. do some I/0 ..

. or run some time

critical code ..

Remove local variables
Pop other registers
Return ("bx 1r")

Gl arsbes
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Architectures Architectures — Architectures
Interrupt processing

Interrupt handler Interrupt handler
Interrupt handler
Clesteinteriunt Things to consider Things to consider
Stack ! @ \:H(Juw;h}lw \”Lr"rj;’)t\,
: Push other registers

e i Interrupt handler code can be interrupted as well.
Declare local variables
Run handler code

. do some 1/0 .. Are you allowing to interrupt an interrupt handler with an
. or run some tine

Are you allowing to interrupt an interrupt handler with an
nterrupt on the same priority level (e.g. the same interrupt)? interrupt on the same priority level (e.g. the same interrupt)?
> Can you overrun a stack with interrupt handlers? i Can you overrun a stack with interrupt handlers?

Program

i Interrupt handler code can be interrupted as well.

Can we have one of those?

Architectures

Multiple programs

Architectures L Architectures

Context switch Context switch
Dispatcher
If we can execute interrupt handler code

Dispatcher
Process 1 Process 2 Process 1
“concurrently” to our “main” program: PCB

- Process 2
PCB g ) ) ) m—
Can we then also have multiple “main” programs?

PCB
s s s |
Code Stack £H

e —
Code Stack S Sta Code Stack G
Context- | " Context-
PC > : Registers |
5P, —rre— —ae
FP > = = _‘
Base- Base. dase Lo epi——— 1

Architectures __ Architectures

_ Architectures

Context switch Context switch Context switch
Dispatcher Dispatcher
Push registers Process 2

Process 1

Dispatcher
Process 1 Brcie Process 2
PCB

Process 1 R Process 2
PCB | |Declare local variables

PCB PCB i |Declare local variables
_ P
i O S —) [PET———
Code Stack .

PCB
I |store SP to PCB 1
el — pC >{ Scheduler i s i |
Code Stack VN Code Stack o Code Stack 'S C Stack | Code Stack VN
Context- SP I~ Context: Context:
switch- switch-
variables variables

PCB p¢ »|Declare local variables

Registers

Registers
Flogs
PC

Loclvarbles

Puameters

Pumees
Gloal v |

Pumetes
Gl ariates [

Gobalarbls

Gloal v |
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Process 1

Context switch
Dispatcher

Push registers

PCB

Code Stack G

| Context-

Declare local variables
Store SP to PCB 1
Scheduler

,|Load SP from PCB 2

Process 2

PCB

Code Stack 'S

P " Context-
switch-

Process 1

»|Remove local variables

Architectures

Context switch

Dispatcher

Push registers Process 2

Declare local variables
Store SP to PCB 1
Scheduler

Load SP from PCB 2

Architectures

Process 1

Context switch
Dispatcher

Push registers

PCB

Code Stack

Declare local variables
Store SP to PCB 1
Scheduler

Load SP from PCB 2
Remove local variables

Process 2

PCB
Code Stack 'S

H ;- Pop registers
variables va e:
Registers

Loca sl

Local variables. i Local varisbles. o

R,

P Puamtes

P

Gl vrisbes

[ [

[ERN— | Glotat vl |
Base»
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Architectures

Context switch
Dispatcher

Architectures

Architectures

Processor Architectures Processor Architectures

Process 1 R Process 2
Declare local variables bCB

Scheduler
Load SP from PCB 2 Code Stack

Pipeline
Code management| |« || |

Parallel pipelines

Code management
Some CPU actions are naturally sequential
(e.g. instructions need to be first loaded, then
decoded before they can be executed).

Filling parallel pipelines
(by alternating incoming commands between
pipelines) may employ multiple ALU’s.

[Sequencer |

More fine grained sequences can
be introduced by breaking CPU

instructions into micro code. . . .

= Interdependencies might limit

|t | s Overlapping those sequences in time the degree of concurrency.

CIES e i) will lead to the concept of pipelines.

ww (Conditional) branches might
again break the pipelines.

Same latency, yet even higher throughput.

] ame latency, yet higher throughput.

nuH( Conditional) branches

might break the pipelines
orameers Pt w Branch predictors become essential.

= Compilers need to be aware of the options.

Gl v | [t

[T ——————
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rchitectures

Architectures

Processor Architectures Processor Architectures

SIMD ALU units

Provides the facility to apply the same in-
struction to multiple data concurrently.
iencer Also referred to as “vector units”.

Processor Architectures

—— Out of order execution e Hyper-threading

Breaking the sequence inside each pipe-
- line leads to ‘out of order’ CPU designs. Decoder

[ Seaencer

Emulates multiple virtual CPU cores
by means of replication of:

= Replace pipelines with hardware scheduler.

Register sets

i Results need to be
“re-sequentialized” or possibly discarded.

Examples: Altivec, MMX, SSE[23[4], ... Sequencer

3 o . Flags
Requires specialized compilers .
F B Interrupt logic
or programming languages with R K &
implicit concurrency. while keeping the “expensive” resources
like the ALU central yet accessible by
multiple hyper-threads concurrently.

s ditional branch prediction” executes
the most likely branch or multiple branches.

= Works better if the presented code
sequence has more independent
instructions and fewer conditional branches.

GPU processing
w This hardware will require (extensive)

= Requires programming languages with
code optimization to be fully utilized.

phics processor as a vector unit. implicit or explicit concurrency.
Unifying architecture languages are Examples: Intel Pentium 4, Core i5/i7, Xeon,
used (Open UDA, GPGPU). Atom, Sun UltraSPARC T2 (8 threads per core)

9: “Architectures” up 1 p al University



Architectures

Architectures

Architectures

Alternative Processor Architectures: Parallax Propeller

Processor Architectures

Processor Architectures
Virtual memory

Multi-core CPUs
Translates logical memory addresses
into physical memory addresses

Full replication of multiple CPU cores
and provides memory protection features.

on the same chip package.

¢ Does not introduce concurrency by itself.

w |s still essential for concurrent programming
as hardware memory protection
guarantees memory integrity for
individual processes / threads.

¢ Often combined with hyper-thread-
ing and/or multiple other means (as
introduced above) on each core.

¢ Cleanest and most explicit implementation
of concurrency on the CPU level.

== Requires synchronized atomic operations.

.l Physical memory ll

ww Requires programming languages with
implicit or explicit concurrency.

Historically the introduction of multi-core
CPUs ended the “GHz race” in the early 2000's.

page 697 of 758 (chapter 9: “Architectures” up 10 page 746) we R. Zimmer, The Ausialian National U
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Architectures

Architectures

Architectures

Multi-CPU systems

Alternative Processor Architectures: Parallax Propeller (2006) Alternative Processor Architectures: IBM Cell processor (2001)

o e P :
»J_‘ | 8 cores with 2kB local memory L‘\._'%_ﬂ LEI.-%I
E eEY AIAREY A (-|I|||.|. 1 ¥ il

. Jof=sl b=l B : Scaling up:
8 cores for specialized high-
bandwidth floating point
operations and 128 bit registers |
= i R W onE

¢ Multi-CPU on the same memory
I Tis multiple CPUs on same motherboard and mem-
| (heorii; 25.6 GFLOPS ory bus, e.g. servers, workstations

Multi-CPU with high-speed interconnects
various supercomputer architectures, e.g. Cray XE6:
* 12-core AMD Opteron, up to 192 per cabinet (2304 cores)
¢ 3D torus interconnect (160GB/sec cap-
acity, 48 ports per node)

Cluster computer (Multi-CPU over network)
multiple computers connected by network interface,

40kB shared memory
1 - ] —1

ores
! e.g. Sun Constellation Cluster at ANU:
* 1492 nodes, each: 2x Quad core Intel Nehalem, 24 GB RAM

No interrupts!
* QDR Infiniband network, 2.6 GB/sec

©2020 Uwe R. Zimmer, The Australian National U apter 9 “Architectures’ ©2020 Uwe . Zimmer, The Au page 700 of 7 Architectures” up 10 page 746)
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Architectures

Architectures

Vector Machines

— Vector Machines

a

wW=a-

Vector Machines

Vectorization

X a- X r

4 a*z

‘ Buzzword collection:
AltiVec, SPE, MMX, SSE,
NEON, SPU, AVX, ...

Translates into ‘

a- X
a-y
z a‘z

Vectorization

| Function is |

X1
V1= V2= (Y
Zq

Reduction

X2
Y2 |= (X1 = X)) AN (y1 =
23

Y2) N (Z1 = 72)

yi=lavy . [

‘ CPU-level vector operations |
. | “promoted” |
JPR— type Real is digits 15;
type Vectors is array (Positive range <>) of Real;

Vectors) return Boolean is

const Index = {1 .. 100000000},
Vector_1 : [Index] real = 1.0,

Scale  : real = 5.1,

type Real is digits 15;
type Vectors is array (Positive range <>) of Real;
function ”=" (Vector_1, Vector_2 :

: Vectors) return Vectors is

function Scale (Scalar : Real; Vector

Scaled_Vector : Vectors (Vector’Range);
begin
for i in Vector’Range loop
Scaled_Vector (i) := Scalar * Vector (i); [
end loop;
return Scaled_Vector;
end Scale;

Combined with
in-lining, loop unrolling and caching

this is as fast as a single CPU will g
|

Scaled : [Vector] real = Scale * Vector_1;

©2020 Uwe R. Zimmer, The Australian Nationa

r

Translates into CPU-level vector operations ‘
as well as multi-core or
fully distributed operations

page 703 of 758 (chapier 9: “Architectures” up 10 pa

(for all i in Vector_1’Range => Vector_1 (i) = Vector_2 (i));

Translates into
CPU-level vector operations

L e ~§

r .
A-chain is evaluated lazy sequentlallﬂ

2020 Une R 1, The Ausialian National U
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Vector Machines Vector Machines Vector Machines

—
Reduction > General Data-parallelism > General Data-parallelism

X3 WOM ﬂﬂﬂa&‘e,f o ITanelalE |6 Jic Cellular automaton transitions from a state into the next state ”:
=2 =)A= )N (BT ) M Translates into CPU-level vector operations > eV € : - "= (,)ieallcellsofastate
Zy — 4 ‘ as well as multi-core or transition concurrently into new cells by following a rule .

const Index = {1 .. 1000000003, | A-operations are fully distributed operations =tk Next_State = forall World_Indices in World do Rule (State, World_Indices);
Vector_1, Vector_2 : [Index] real = 1.0; ‘ | I - Y m ' v A m A

proc Equal (v1, v2) : bool evalL.Ja.ted in a concurrent John Conway’s Game of Life rule:
{return 8& reduce (vl == v2);} divide-and-conquer ‘ i proc Rule (S, (i, j) : index (World)) : Cell {
(binary tree) strLL(:tuEe. | const Population : index ({0 .. 9}) =
r— . - const Mask : [1 .. 3, 1 .. 3] real = (@, -1, 0, (-1, 5, -1, (@, -1, 0)); + reduce Count (Cell.Alive, S [i -1 .. i+1, j-1.. j+11);
——— | | Translates into CPU-level vector operations proc Unsharp_Mask (P, (i, j) : index (Image)) : real return (if Population == 3
| f“““i""l'f,, i as well as multi-core or {return + reduce (Mask * P [i -1 .. 1+ 1, 3-1.. 3+11);} Il (Population == 4 8 S [i, j] == Cell.Alive) then Cell.Alive
| “promoted” | fully distributed operations const Sharpened_Picture = forall px in Inage do Unsharp_Mask (Picture, px); else Cell.Dead);
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Architectures - Architectures - Architectures

Operating Systems What is an operating system? What is an operating system?

1. A virtual machine! 1. A virtual machine!

hat is an in m? " . . .
LD e A ... offering a more comfortable and safer environment ... offering a more comfortable and safer environment

- - _”' Nirohme
environment

Hardware Hardware Hardware

Typ. general OS Typ. real-time system Typ. embedded system

(e.g. memory protection, hardware abstraction, multitasking, ...)

©2020 Uwe R. Zimmer, The Ausiralian National University chapter 9 “Architectures” up to page 746 ©2020 Uwe . Zimmer, The Austalian National University page 709 of 758 (chapter 9: “Architectures” up 10 ©2020 Uwe R. Zimmer, The Australian National University hapter 9 “Architectures” up to page 746/

Architectures Architectures 2 Architectures

What is an operating system? What is an operating system? The evolution of operating systems

in the beginning: single user, single program, single task, serial processing - no OS

' / 50s: System monitors / batch processing
2. A resource manager! 2. A resource manager! s the monitor ordered the sequence of jobs and triggered their sequential execution

50s-60s: Advanced system monitors / batch processing:

q . 0 q w the monitor is handling interrupts and timers
.. coordinating access to hardware resources ... coordinating access to hardware resources w first support for memory protection

Operating systems deal with w firstimplementations of privileged instructions (accessible by the monitor only).

early 60s: Multiprogramming systems:
processors 1 employ the long device I/0 delays for switches to other, runable programs

memory early 60s: Multiprogramming, time-sharing systems:
mass storage & assign time-slices to each program and switch regularly

communication channels early 70s: Multitasking systems — multiple developments resulting in UNIX (besides others)

devices (timers, special purpose processors, peripheral hardware, ... early 80s: single user, single tasking systems, with emphasis on user interface or APls.
MS-DOS, CP/M, MacOS and others first employed ‘small scale’ CPUs (personal computers).

mid-80s: Distributed/multiprocessor operating systems - modern UNIX systems (SYSV, BSD)

wr and tasks/processes/programs which are applying for access to these resources!

758 (chapter 9: “Architectures” up o page 746 J sstalian Nationa i page 712 of 7358 (chapier 9: “Architectures” up 10 pa page 713 0f 758 (c




Architectures _‘ = Architectures Architectures

The evolution of communication systems Types of current operating systems Types of current operating systems

* 1901: first wireless data transmission (Morse-code from ships to shore) Personal computing systems, workstations, and workgroup servers:
« 56: first transmission of data through phone-lines ) . Parallel operating systems
o /62: first transmission of data via satellites (Telstar)  late 70s: Workstations starting by porting UNIX or VMS to ‘smaller’ computers.

: . 3(H rting with almost none of the classical OS-fa res ani Vi ) 3
o '69: ARPA-net (predecessor of the current internet) 80s: PCs starting with almost none of the classical OS-features and services, « support for a large number of processors, either:

but with an user-interface (MacOS) and simple device drivers (MS-DOS)
* 80s: introduction of fast local networks (LANs): ethernet, token-ring * symmetrical: each CPU has a full copy of the operating system

« 90s: mass introduction of wireless networks (LAN and WAN) w last 20 years: evolving and expanding into current general purpose OSs, like for instace: or
Solaris (based on SVR4, BSD, and SunOS)
LINUX (open source UNIX re-implementation for x86 processors and others)
Current standard consumer computers might come with: current Windows (proprietary, partly based on Windows NT, which is ‘related’ to VMS)
High speed network connectors (e.g. GB-Ethernet) MacOS X (Mach kernel with BSD Unix and a proprietary user-interface)
Wireless LAN (e.g. IEEE802.11g, ...)
Local device bus-system (e.g. Firewire 800, Fibre Channel or USB 3.0)
Wireless local device network (e.g. Bluetooth)
Infrared communication (e.g. IrDA) * None of these OSs are suitable for distributed or real-time systems.
Modem/ADSL

* asymmetrical: only one CPU carries the full operating system, the others are
operated by small operating system stubs to transfer code or tasks.

* Multiprocessing is supported by all these OSs to some extent.
¢ None of these OSs are suitable for embedded systems, although trials have been performed.

©2020 Uwe R. Zimmer, The Austalian National University 7 pter 9: “Architectures” up

Architectures Architectures Architectures

Types of current operating systems Types of current operating systems Types of current operating systems

Distributed operating systems Real-time operating systems Real-time operating systems

 all CPUs carry a small kernel operating system for communication services. . .

Fast context switches? Fasteontextswitches? should be fast anyway

Small size? Smalt-size? should be small anyway

Quick response to external interrupts? tickrespon ternatinterrupts? not ‘quick’, but predictable
Multitasking? Muttitasking? often, not always

* guarantee availability (hot stand-by) ‘low level’ programming interfaces? ng-interfaces? needed in many operating systems

* ortoincrease throughput (heavy duty servers) Interprocess communication tools? SS ieath 52 needed in almost all operating systems

« all other OS-services are distributed over available CPUs
* services may migrate

services can be multiplied in order to

High processor utilization? i s itization? fault tolerance builds on redundancy!

©2020 Uwe R. Zimmer, The Ausiralian National University 58 (chapter 9; “Architectures” up o page 746 ©2020 Uwe R. Zimmer, The Austalian National U page 718 of 75¢ we R. Zimmer, The Ausiralian National University page 719 of 758 (chapter 9; “Architectures” up to page 746

Architectures Architectures Architectures

Types of current operating systems Types of current operating systems What is an operating system?

Is there a standard set of features for operating systems?
Real-time operating systems need to provide... Embedded operating systems
w the logical correctness of the results as well as
. ) ¢ usually real-time systems, often hard real-time systems
= the correctness of the time, when the results are delivered )
 very small footprint (often a few KBs)
* none or limited user-interaction

. Predlctablllty! (not performancel) 1w 90-95% of all processors are working here

w All results are to be delivered just-in-time - not too early, not too late.

Timing constraints are specified in many different ways ...
... often as a response to ‘external’ events
& reactive systems
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Architectures

What is an operating system?
Is there a standard set of features for operating systems?

= no:
the term ‘operating system’ covers 4kB microkernels,

as well as > 1GB installations of desktop general purpose operating systems.
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Architectures

What is an operating system?
Is there a standard set of features for operating systems?

= no:
the term ‘operating system’ covers 4kB microkernels,
as well as > 1GB installations of desktop general purpose operating systems.

Is there a minimal set of features?

= almost:

memory process and inter-process
will be considered essential in most systems

Is there always an explicit operating system?
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Is there a standard set of features for operating systems?

= no:
the term ‘operating system’ covers 4kB microkernels,

as well as > 1GB installations of desktop general purpose operating systems.

Is there a minimal set of features?

Architectures

What is an operating system?
Is there a standard set of features for operating systems?

= no:
the term ‘operating system’ covers 4kB microkernels,
as well as > 1GB installations of desktop general purpose operating systems.

Is there a minimal set of features?

= almost:

memory process and inter-process
will be considered essential in most systems

Is there always an explicit operating system?

= no:

some languages and development systems operate with standalone runtime environments
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What is an operating system?
Is there a standard set of features for operating systems?

= no:
the term ‘operating system’ covers 4kB microkernels,

as well as > 1GB installations of desktop general purpose operating systems.

Is there a minimal set of features?

ww almost:

memory process and inter-process
will be considered essential in most systems
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Architectures

Typical features of operating systems

Process management:

* Context switch
¢ Scheduling
* Book keeping (creation, states, cleanup)

= context switch:

= needs to...

* ‘remove’ one process from the CPU while preserving its state
¢ choose another process (scheduling)

* ‘insert’ the new process into the CPU, restoring the CPU state

Some CPUs have hardware support for context switching, otherwise:
w use interrupt mechanism

we R. Zimmer, The Ausiralian National University 8 (chapter 9: “Architectures” up o page 746

Architectures

Typical features of operating systems

Memory management:
Allocation / Deallocation
Virtual memory: logical vs. physical addresses, segments, paging, swapping, etc.
Memory protection (privilege levels, separate virtual memory segments, ...)
Shared memory

Synchronisation / Inter-process communication
* semaphores, mutexes, cond. variables, channels, mailboxes, MPI, etc. (chapter 4)
w tightly coupled to scheduling / task switching!

Hardware abstraction

* Device drivers
* API
* Protocols, file systems, networking, everything else...
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Architectures

Typical structures of operating systems

Monolithic

(or ‘the big mess...")

non-portable

hard to maintain

lacks reliability

all services are in the kernel (on the same privilege level)

& but: may reach high efficiency

Monolithic

e.g. most early UNIX systems,
MS-DOS (80s), Windows (all non-NT based versions)
MacOS (until version 9), and many others...
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Architectures

Typical structures of operating systems

Monolithic & Modular

Modules can be platform independent

Easier to maintain and to develop

Reliability is increased

all services are still in the kernel (on the same privilege level)

w= may reach high efficiency

Modular

e.g. current Linux versions
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Typical structures of operating systems Typical structures of operating systems Typical structures of operating systems

Monolithic & layered pKernels & virtual machines pKernels & client-server models

pkernel implements essential process,

kernel implements essential process, "
K P P memory, and message handling

easily portable memory, and message handling

. . N . all ‘higher’ services are user level servers
significantly easier to maintain all‘higher services are dealt with outside the o g ‘ °
crashing layers do not necessarily stop the whole OS - A kernel = no threat for the kernel stability “ ﬂ significantly easier to maintain
possibly reduced efficiency through many interfaces mre— significantly easier to maintain — kernel ensures reliable message passing

. between clients and servers ient servi c
rigorous implementation of the stacked virtual machine 5 multiple OSs can be executed pkernel, client server structure
i highly modular and flexible
perspective on OSs at the same time ghly )
servers can be redundant and easily replaced

pkernel is highly hardware dependent
only the pkernel needs to be ported. possibly reduced efficiency through
. X N . possibly reduced efficiency through increased communications
e.g. some current UNIX implementations (e.g. Solaris) to a certain de- increased communications
gree, many research OSs (e.g. ‘THE system’, Dijkstra ‘68)

e.g. wide spread concept: as early as the CP/M, VM/370 ('79)
or as recent as MacOS X (mach kernel + BSD unix), ... e.g. current research projects, L4, etc.
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Typical structures of operating systems UNIX UNIX

pKernels & client-server models UNIX features Dynamic process creation

pkernel implements essential process, * Hierarchical file-system (maintained via‘mount’ and ‘unmount’) pid = fork ();
memory, and message handling  Universal file-interface applied to files, devices (1/0), as well as IPC
all*higher’ services are user level servers * Dynamic process creation via duplication

significantly easier to maintain

resulting a duplication of the current process

¢ returning 0 to the newly created process

¢ Choice of shells . . . .

Kernel en liable mes ssin * returning the process id of the child process to the creating process (the ‘parent’ process)
ernel ensures reliable message passing e Internal structure as well as all APIs are based on ‘C’ or -1 for a failure

between clients and servers:

locally and through a network Network ¢ Relatively high degree of portability

highly modular and flexible pkernel, distributed systems & UNICS, UNIX, BSD, XENIX, System V, QNX, IRIX, SunOS, Ultrix, Sinix, Mach,
servers can be redundant and easily replaced Plan 9, NeXTSTEP, AIX, HP-UX, Solaris, NetBSD, FreeBSD, Linux, OPEN-

possibly reduced efficiency through increased communications STEP, OpenBSD, Darwin, QNX/Neutrino, OS X, QNX RTOS, ..

e.g. Java engines,
distributed real-time operating systems, current distributed OSs research projects
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Architectures Architectures 2 Architectures

UNIX UNIX UNIX

Dynamic process creation Synchronization in UNIX == Signals Message passing in UNIX = Pipes
int data_pipe [2], c, rc;
if (pipe (data_pipe) == -1) { 2 CEDNS A T
#include <unistd.h> id = fork (; perror (“no pipe"y; exit (1); close (data_pipe [01);
#include <sys/types.h> if (id == 0) { ) ! while ((c = getchar ()) > @) {
* returning 0 to the newly created process #include <signal.h> if (writ
* returning the process id of the child process to the creating process (the ‘parent’ process) pid_t id; (data_pipe[1], &, 1) == -1) {
or -1 for a failure perror (“pipe broken“);
lose (data_pipe [11);
exit (1);

pid = fork (O;
resulting a duplication of the current process

signal (SIGSTOP, catch_stop); if (fork () == @) { // child
bause (); close (data_pipe [11);
exit (0): while ((rc = read
(data_pipe [@], &c, 1)) >0) {
putchar (c);
} b
b

void catch_stop (int sig_num)
Frequent usage: ¢
if (fork () == 0) { . X } else {
// ... the child’s task ... often implemented as: /% do something with the signal =/ Kill (id, SIGSTOP);
(“absolute path to executable file“, “args“); id = wait O;
exit (0); /* terminate child process */ L SLBG if (rc == -1) {
} else { perror (“pipe broken); "
//... the parent’s task ... close (data_pipe [@1); exit (1);} pid = wait ();
pid = wait (); /* wait for the termination of one child process */ Close (data_pipe [01): exit (0):

(data_pipe [11);

b
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Architectures — Architectures Architectures
UNIX UNIX POSIX

s & IPC in UNIX Sockets in BSD UNIX Portable Operating System Interface for Unix

Processe: Sockets try to keep the paradigm of a universal file interface for everything and introduce:
* Process creation results in a duplication of address space (‘copy-on-write’ becomes necessary)

inefficient, but can generate new tasks out of any user process — no shared memory! Connectionless interfaces (e.g. UDP/IP): IEEE/ANSI Std 1003.1 and following.

Library Interface (API)
[C Language calling conventions — types exit mostly in terms of
(open) lists of pointers and integers with overloaded meanings].

Signals: * Server side: - -
* limited information content, no buffering, no timing assurances (signals are not interrupts!) ¢ Client side:
very basic, yet not very powerful form of synchronisation
Connection oriented interfaces (e.g. TCP/IP): More than 30 different POSIX standards (and growing / changing).

o Server side: - - 5 a system is ‘POSIX compliant, if it implements parts of one of them!

is identical to file o

s or network communications . o e R .
€s 0 cations > a system is “100% POSIX compliant, if it implements one of them!
e Client side:
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POSIX - some of the relevant standards... POSIX - 1003.1b/c

Summary

Architectures

imesenal — " U0 Briorized o e Threads: a common interface to threading - differences to ‘classical UNIX processes’

real-time signals, priority scheduling, timers, asynchronous 1/O, prioritiz , syn- . .

ERj:LS,::S EIRE 10 e A e i ey s, A PGl ¢ Hardware architectures - from simple logic to supercomputers
AES TR EEHI EEE I oo  logic, CPU architecture, pipelines, out-of-order execution, multithreading, ...

e Priority scheduling: fixed priority, 32 priority levels
. . Ll - i
¢ Real-time signals: signals with multiple levels of priority Data-Parallelism

* Vectorization, Reduction, General data-parallelism

o Timers: delivery is accomplished using POSIX signals

iti . new process create semantics (spawn), sporadic server scheduling, execution time . .

10031 ?dmde'téo{':rl‘ﬁzzls monitoring of processes and threads, /0 advisory information, timeouts on block- * Semaphore: named semaphore
! xtensi ing functions, device control, and interrupt control e Concurrency in languages

* Memory queues: message passing using named queues Y guag N

1001j  Advanced Real-  typed memory, nanosleep improvements, barrier synchronization, readeriwriter _ ) Some examples: Haskell, Occam, Chapel

1100 time Extensions locks, spin locks, and persistent notification for message queues ¢ Shared memory: memory regions shared between multiple processes

. ) S * Operating systems

p— Distributed  buffer management, send control blocks, asynchronous and synchronous oper- L4 Memory locking: no virtual memory swapping of physical memory pages P; 8 SY! e

e ations, bounded blocking, message priorities, message labels, and implementation * Structures: monolithic, modular, layered, pkernels

Real-time protocols
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